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ABSTRACT 

A modified  matrix  product  is  defined  and  it  is  shown  that 

this product:  may  be  used  to define  a  group.  Each  matrix  in  such  a 

group  possesses  an  inverse. To distinguish  it  from  the  regular ma- 

trix  inverse,  it  is  called  the  generalized  inverse.  The  general so- 

lution  of  a  matrix  equation  is  expressed  in  terms of the  incomplete 

inverse (a special  form  of  the  generalized  inverse).  A  minimum  norm 

solution is derived,  and  it  is  shown  that  the  associated  matrix  (the 

penrose pseudo-inverse) is a  generalized  inverse. 

Algorithms  for  computing  the  incomplete  inverse  of a sym- 

metric  matrix  are  derived.  These  algorithms,  which  are  little  more 

con~p l i ca t cv l  than  those  for  the  regular inverse,  utilize  matrix  sym- 

m c t r y  so  Lhat the matrix  may be stored  in  upper  triangular form. 

Similar  use of matrix  symmetry  is  made  in  the  computation  of  the 

pseudo-inverse  (the  method  thus  requires  only  half  as  much  computer 

core  storage  as  the  commonly  used  Andree  algorithm). 

The  most  important  application  of  the  incomplete  inverse 

is to  the  least  squares  problem. It is  shown  that  the  incomplete 

inverse of an  augmented  normal  matrix  includes  all  the  quantities 

(including  the  effect of  'consider'  parameters)  associated  with  the 

least  squares  solution. In particular,  an  answer  is  provided to  the 

problem  that  occurs when, (i) the  data  residuals  are  too  large,  and 

(ii)  the  mathematical  model  may  theoretically  be  augmented  by a 

large  number  of  terms,  but  (iii)  there  is  insufficient  data  to jus- 

tify  augmenting  the  model  by  more  than one term.  A  simple  computa- 
iii 



tion  involving  the  incomplete  inverse  will  tell  which  term  will 

yield  the  best  improvement in the  data  fit.  This  is of special in- 

terest to the  processing  of  satelliie data, where  the  model  may 

always  be  augmented  by  any  number of geopotential  terms.  The in- 

complete  inverse  may  thus  be  used  to  determine  which  geopotential 

terms  most  influence  some  observed  orbit. 



The'incomplete  inverse  was  first  introduced in "An Exten- 

sion  of NAP3.1F" (Morduch, 1975) in  connection  with  the  applica- 

tion of  'consider'  parameters  to  the  least  squares  solution. In 

that  report  it  was  defined  in a rather  complicated  manner  invol- 

ving  matrix  partitions  and  orthogonal  transformations.  For  that 

reason  the  derivations  and  proofs  of  formulae  involving  the  incom- 

plete  inverse  tended  to  be  long  and  laborious,  although  the form- 

ulae  themselves  were  relatively  simple.  The  generalized  inverse 

is  defined  in  this  report  as  the  true  inverse  of  a  matrix  in  a 

group  defined  by  a  generalized  matrix  product,  and  includes  the 

incomplete  inverse  as  a  special  case.  The  reason  for  this  report 

is not  merely to give  much  simpler  proofs  for  previously  derived 

formulae,  but  also  to  describe  the  application  of  the  incomplete 

inverse  to  the  general  and  minimum  norm  solutions  of  matrix  equa- 

tions. 

This  effort  was  supported  by  NASA/GSFC  under  Contract  No.  NAS5-20532. 
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I 

1.0 INTRODUCTION 

The  reduction  of  observed  data  using  the  method of least 

squares is often  fraught  with  difficulty. If this  is  caused  by 

some  unpredictable  malfunction of a  measurement  instrument, then, 

provided  that  this  is  recognized,  the  offending  data  is  excluded 

from  the  reduction.  However,  morefrequently,  the  cause of the 

difficulty  lies  in  the  inadequacy  of  the  mathematical  modelling. 

This is often  due  not to  any  lack of knowledge of theory  on  the 

part of the  investigator,  but  rather  to  the  impracti,cability  of 

having  to  solve  for  an  extremely  large  set of unknown  parameters. 

The  concept  of  'consider'  parameters  has  been  used by several in- 

vestigators  to  tackle  the  problem  when  this  is s o .  

The  purpose  of  this  report is to  introduce  a  generalized 

inverse A'' of  a  matrix A ,  a  particular  form of which,  the  incom- 

plete inverse,  has  the  property  that  its  elements  contain  all  the 

results  of  the  least  squares  reduction  including  the  effects of 

the  'consider'  parameters. 

The  generalized  inverse  is  defined  in  Section 2 of  this 

report, as  is  its  particular form, the  incomplete  inverse.  The 

general  solution  of  a  matrix  equation  is  expressed  in  terms  of  the 

incomplete  inverse.  This  is  used  to  derive  a  minimum norm solu- 

tion.  Although  the  method  may  inherently  be  less  accurate than, 

say, the  methods  of  Andree  of  Gram-Schmidt  (Lefferts, 1 9 6 9 ) ,  all 

computations  involve  only  symmetric  matrices so that  the  computer 

storage  requirement  is  much  less  than  that  of  either of the  two 



other  methods. It is  also  shown  that  the  matrix  associated  with 

the  minimum  norm  solution  belongs  to  the  set of generalized  inver- 

ses. 

An algorithm  for  the  computation of the  incomplete  inverse 

o f a  symmetric  matrix  is  derived  in  Section  3.  It  is  a  generaliza- 

tion of the  particular  method of Gaussian  elimination  derived  by 

the  author  for  obtaining  the  usual  inverse.  (This  method  is  used 

in the  Navigation  Analysis  Program,  NAP3.1F,  used  at  Goddard  Space . 

Flight  Center  for  orbit  determination.  Although  the  method  involves 

exactly  the  same  number  of  arithmetic  computations  as  any  other 

method  of  Gaussian  elimination,  which  take  advantage  of  the  matrix 

symmetry,  it  is  much simpler,  and  therefore  easier to program, 

when  the  matrix  to  be  inverted  contains  patterned  zeroes.) 

Section 4 deals  with  the  linear  least  squares  problem. 

It is shown,  amongst  other  things,  that  both  the  weighted  least 

squares  estimate, x, and  the  weighted sum of  the  squares of the 

residuals, C & )  , are  contained  within  the  incomplete  inverse, M", 

A. 

of  a  matrix M. The  effect  of  consider  parameters  is  taken  into 

account  in  the  derivation of  a  formula  for  the  expected  value  of 

C(̂x). (C(x) is a  measure  of  the  goodness  of  the  data  fit  and  is 

therefore  an  important  quantity  to  consider  in  the  least  squares 

reduction.)  -It  is  also  shown  that  the  change  in  the  value of C(x) 

when  a  parameter  is  switched  from  a  'consider'  to  a  'solve'  mode 

is  given  by a simple  expression  involving  one  multiplication  and 

one'division.  The  last  mentioned  result  is  of  considerable  practi- 

cal  significance  for  the  following  reason.  Suppose  that  for  some 

data  reduction  a  given  mathematical  model  results  in  an  unaccept- 

ably  bad  data  fit.  Provided  that  the  investigator  knows how to 

A 

A 
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improve  his  model,  he  will  then  selectively -(to augment  the  model 

by  a  large  number  of  parameters  in  one  step  is not, in  general 

desirable,  since  the  results  may  be  quite  meaningless if too  many 

parameters  are  solved  for)  augment  his  model  by  various  parameters 

and  then  choose  the one  which  gives  the  best  fit.  Such  a  task  may 

be  very  arduous. However, by  including  as  'consider'  parameters 

all such parameters  as he might  wish  to  include  in  his model, he 

may  then  select  the one, which  when switched  from  the  'consider' 

to  the  'solve'  mode  yields  the  best  improvement  in  the  data  fit. 

In  other words, there  is  no  need  to  perform  a  large  number  of  data 

reductions  using  different  mathematical  models.  One  will  do. 

The  most  important  formulae  are  summarized in  Section 5. 

3 



2.0 DEFINITION OF A 

GENERALIZED MATRIX IINVERSE. .AND 

ITS APPLICATIONS TO THE SOLUTION 

OF MATRIX  EOUATIONS 

In this  section  we  shall  define  a  generalized  matrix 

product  between  two  square  matrices. It wil1,be shown  that  based 

on this  generalized  product a set  of nxn matrices  form  a  group.' 

The  generalized  inverse of a  matrix  will  then  be  defined  as  the in- 

verse  of a  matrix  in  this  group. 

2.1 The.Generalized  Matrix  Product of Two Square  Matrices. 

Definition:  The  generalized  matrix  product Of 

any  two  square  matrices  (of  equal  dimen- 

sions)  A  and B is  denoted  by A*B and is 

defined  by 

A-B = -ARB +A(I-R)  +(I-R)B, (2.1) 

where  I is the  identity  matrix  and  R  is  a  square  matrix  satisfying 

R = R' (2 .2 )  

and 

RR = R (2.3) 

It  can  easily  be  shown  that  for  any  three  nxn  matrices 

A ,  B and C 

(A*B) C = A*(B-C) ( 2 . 4 )  

4 



s o  that  the  generalized  product is associative. 

It can  also  be  shown  that 

A.  (-R) = (-R).A = A ,  (2 .5 )  

for any nln matrix A .  Hence (-R) is  the  identity  element. 

The  inverse of A ,  which  we shall denote by A*, must  satis- 

fy 

A. AfC = -R (2 .6)  

A s  is  well  known  from  group  theory,  it  follows  from  equa- 

tion (2.6) that 

It follows  from  the  above  that  based on the  generalized 

product,  all nxn matrices  that  possess an  inverse  form  a group.  

We hence  conclude  that  the  inverse is unique  and  also  that 

and 

It follows  from  equations (2.1) and (2.2) that 

(AmBj  = -BTRAT + ( I -R)AT + B' (1-R), 

i - e . ,  

( A . B ) ~  = B~ .A' (2.10) 

Hence  taking  the  transpose of equation (2.5) we deduce  that 

5 



(A*)' -A' = - R  

Since by  definition 

(AT )*-AT = -R,  

we conclude  that 

(A*f = ( A T ) *  (2.11) 

It follows  from  fhe  above  equation  that  if A is  symmetric 

then so is A*. 

2.2 The  Generalized  Inverse. 

A* has  been  defined  as  the  inverse  of A with  respect 

to  the  generalized  product  based on R. Henceforth,..it  will 

be  referred  to  simply  as  the  generalized  inverse of A .  However, 
. .. . 

when  any  risk  of  confusion  arises,  it  will  be  referred  to as the  gen- 

eralized  inverse of A with  respect  to R and  will  be  denoted  by ATR. 

We  shall  next  derive some useful  formulae  involving A*. 

A t  this  point  it  is  convenient  to  define  the  square  matrix S by 

S = I-R (2.12) 

It follows  from  the  above  definition  and  from  equations 

(2.2)' and ( 2 . 3 )  that 

s = ST, 

SR = RS = 0, 

(2.13) 

(2.14) 

and 

6 

ss = s (2.15) 



Equation  (2.1)  may  then be  rewritten  in  the  form 

A - B  = -AR3 + AS + SB 

From  the  above  and  equation (2.6) .we  deduce  that 

whence 

A M *  = R + AS + SA*, 

A* = (AR-s)”  (R + - A S )  

(2.16) 

(2.17) 

(2.18) 

Note  that  it  follows  from  the  uniqueness of A’‘ that  if A* 

exists  then (AR-S) must  be  non-singular.  From  equations (2.16)  and 

(2.7) we similarly  find  that 

whence 

A*RA = R + A*S + S A ,  

A* = (I: + SA) (RA - S)-’ 

It  follows  from  equations (2.8)  and  (2.18)  .that 

A = (A*R-s)-~ ( R  + A*s), 

and  similarly  from  equations (2.8) and  (2.20)  that 

A = (R + SA*) (RA*-S)-’ 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

Postmultiplying  equation  (2.17)  by R we obtain 

ARA*R = R + SA*R, (2.23) 

whence 

(AR-s )  A*R = R ( 2 . 2 4 )  

Since (AR-S)S  = - S  and R+S = I, we therefore  con5lude 
7 



t h a t  

(AR-S) ( A ~ ~ R - s )  = I 

Hence a l s o ,  

(A"R-s) (AR-S) = I 

Premult iplying  equat ion  (2 .23)  by R w e  f i n d   t h a t  

(RAR)  (RAj'R) = R , 

whence 

(RAR+S) (RA*R+S) = I 

Since 

AR-S = A-(A+I)S, 

w e  deduce  from  equation  (2.25)  that 

A(A*R-S) = I + (A+I) (SA"R-S) 

. (2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

* 
2.3  The Rank of A when SA S = 0. 

I n   g e n e r a l ,  i f  M ,  B and C a r e   t h r e e  nxn m a t r i c e s   s a t i s f y -  

ing 

M = B + C ,  (2.30) 

and 

BC = 0 ,  

t hen   c l ea r ly  

rank(M) 5 rank(B) + rank((=) 
8 

(2.31) 

( 2 . 3 2 )  



I 

anti 

rank(B) 5 n-rank((=) ( 2 . 3 3 )  

If  furthermore, M is  non-singular s o  that  rank(M) = n, 

then it follows  from ( 2 . 3 2 )  that 

rank(B) 2 n-rank(C) ( 2 . 3 4 )  

Comparing  inequalities ( 2 . 3 3 )  and ( 2 . 3 4 )  we deduce  that 

rank(B) = n-rank(C) 

Since 

I = R+S  and RS = 0, 

we therefore  conclude  that 

rank(S) = n-rank(R) 

Since  for  any.matrix M, 

(I-RMS) (I+RMS) = I, 
* 

it follows  that I-RYS is  non-singular. ' 

Since 

I-RMS = S-RYS + R 

we  deduce  that  for  any  matrix M 

rank(S-RMS) = n-rank(R) 

It  follows  from  equation ( 2 . 2 8 )  that 

( 2 . 3 5 )  

( 2 . 3 6 )  

( 2 . 3 7 )  

( 2 . 3 8 )  

9 



RAR + S is  non-singular. 

Since 

RAR + S = (S-RAS) + RA, 

we hence  deduce  that 

rank(RA) = n-rank(S-RAS) 

Since  equation ( 2 . 3 8 )  is  valid for  any  matrix M it  follows 

from  the  above  that 

rank(RA) = rank(R) 

Since  quite  obviously 

rank(RA) 5 rank(A) , 

we  conclude  that 

rank(R) 5 rank(A) 

Similarly 

rank (R) 5 rank (A") 

( 2 . 3 9 )  

( 2 . 4 0 )  

( 2  . 41 )  

We  shall  now  make  use of the  assumed  relation 

Postmultiplying  equation (2.17) by S, we deduce  with  the 

aid'of the  above  equation  that 

A(S-RA"S) = 0 ( 2 . 4 3 )  

10 



Hence 

rank(A) -5 n-rank(S-M*S) 

Letting M = A* in  equation ( 2 . 3 8 )  we  obtain 

rank(S-RA'kS) = n-rank(R) 

( 2 . 4 4 )  

( 2 . 4 5 )  

Hence 

rank(A) 5 rank(R) ( 2 . 4 6 )  

Comparing  inequalities ( 2 . 4 0 )  and ( 2 . 4 6 )  we conclude  that 

rank(A) = rank(R) ( 2 . 4 7 )  

Note that  inequalities ( 2 . 4 0 ) ,   ( 2 . 4 1 )  and ( 2 . 4 5 )  follow 

from the  existence of A*, whereas  inequality ( 2 . 4 6 )  is  a  conse- 

quence of equation ( 2 . 4 2 ) .  

2 . 4  

and 

An Orthogonal  Transformation of the Generalized  Inverse. 

Let  v  be  an  orthogonal  matrix  satisfying 

Let A, , R, and So be  defined  by 

A, = VAV' , 

R, = VRV' , 

so = vsv'. 

( 2 . 4 8 )  

( 2 . 4 9 )  

( 2 . 5 0 )  

( 2 . 5 1 )  

11 



It follows  from  the  above.  that 

r m d  

R, = Rd 

R,R, = R, 

S,, -= I - R ,  

( 2 . 5 2 )  

( 2 . 5 3 )  

( 2 . 5 4 )  

Writing  equation ( 2 . 1 7 )  in  the  form 

( 2 . 5 5 )  

We  deduce  after  premultiplying  the  equation  by v and 

postmutiplying  it  by vT , and  inserting v'v(=I) between  all ma- 

trices  that 

(A, R, -So )v(A.:R)vT = R, + A, So , 

whence 

V ( A , R ) V ~ =  (A,R,-s, >-' (R, + A,s,) 
* 

( 2 . 5 6 )  

Since  the  right  hand  side  of  the  above  equation  equals 
* 

A, ,R, by definition,  it  follows  that 

2 . 5  

A, , R, = v(A:R) vT * 

The  Incomplete  Inverse. 

( 2 . 5 7 )  

The  incomplete  inverse  is  defined  as  the  generalized  in- 

verse with  respect  to R, where R is a  diagonal  matrix. 

It  thus follows from  equation ( 2 . 3 )  that the elements  of 

R are  either  zero  or one. The  elements of S are  similarly  either 

12 



zero  or  one. 

The  reason  for  calling  the  inverse  incomplete  is  as  fol- 

lows. Inverting  equation (2.21) we  obtain 

The  inverse  of A may  thus  ,always  be  obtained  directly  from 

the  generalized  inverse.  However,  the  total  number  of  computations 

in  obtaining A” is  independent  of  whether  or  not  incomplete in- 

verses  are  obtained in intermediate  steps. 

Let  us  now  assume  that we are  given  matrices A and R, 

where R is a diagonal  matrix,  whose  elements  are  either  zero  or 

one. 

We can  then  find an  orthogonal  matrix v satisfying  eaua- 

t i o n  ( % . / + 8 )  such t h a t  R,, as  given  by  equation (2 .50 ) ,  may  be  writ- 

t e n  in partiLioned form as 

R, = [: :] (2.59) 

Correspondingly  let A, 

( 2 . 4 9 )  and (2 .51 ) )  be  written  as 

and So (as  defined  by  equations 

(2.60) 

and 

(2.61) 



It follows  from  the  above that 

Hence, 

Since 

(2 .62)  

(2 .63 )  

(2 . 6 4 )  

we obtain,  when  substituting the  expressions from equations (2.63) 

and ( 2 . 6 4 )  on the  right  hand  side  of  the  above  equation 

A:, R, = 

Since by equations ( 2 . 4 8 )  and (2.57) 

it follows  from  equation (2.65) that '. 

(2.65) 

(2.66) 

(2.67) 
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where 

(2.68) 

It  can  be  seen  from  the  above  that  if A is  appropriately 

defined  then A* will  yield  matrices  of  the  form L" , L-' x and 

L" B .  even  if  in a  jumbled (to the  extent  that  v  differs  from  the 

identity  matrix)  form. The  application of the  incomplete  inverse 

to the.solution  of  matrix  equations  involving  consider  parameters 

will  be  dealt  with  in  a  later  section. 

2.6 The  General - ~~~ Solution of ~ the " "  Matrix  Equation Ax = y, 

Where  A  is a  Symmetric  Matrix. 

Let us consider  the  matrix  equation 

Ax = y, (2.69) 

where  A  is  a  symmetric nxn matrix  and  x  and  y  are  n-vectors. 

Let  us  assume  that rank(A) = r. Let  R  be  defined  as  a  diagonal ma- 

trix,  whose  elements  are  either  zero  or  one. We can  clearly  choose 

R such  that  the  non-zero  columns of AR  are  1inearly.independent 

and  the  remaining  columns of A are  linear  functions  of  the  columns 

of AR. In other  words,  there  exists  an nxn matrix . P  such  that 

and 

AS = ARP, 

SP = 0 ,  

(2.70) 

(2.71) 
1 5  



where 

S = I-R. 

Since  the  non-zero  columns of AR are  linearly  independent 

i t  follows that if there  exists  a  vector u such  that 

ARu = 0, then  Ru = 0. ( 2 . 7 2 )  

We  shall  now  show  that  AR-S  is  non-singular.  Let  us 

assume  that  there  exists  a  vect,or u such  that 

(AR-S)u = 0 ( 2 . 7 3 )  

Premultiplying  the  above  equation  by  R  and S,  respec- 

tively we  deduce  that 

and 

RARu = 0 

(SAR-S)u = 0 

( 2 . 7 4 )  

( 2 . 7 5 )  

Postmultiplying  the  transpose of equation ( 2 . 7 0 )  by  Ru 

we obtain 

SARu = PTRARu, 

whence by equation ( 2 . 7 4 ) ,  

SARu = 0 

Adding  equations ( 2 . 7 4 )  and ( 2 . 7 6 )  we obtain 

ARu = 0. 

(2 .76)  
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It hence  follows  from  equation (2.72) that 

Ru = 0 (2 .77)  

Adding  equations (2 .76)  and (2.77) and  subtracting  equa- 

tion (2 .75)  from.  the  result we find  that 

u = o  (2 .78)  

Subtracting  equation (2 .71)  from (2.70) we obtain 

whence 

(AR-S)P A A.S , 

P = (AR-s)” AS 

(2 .79)  

(2 .80)  

The  right  hand  side of the  above  equation  equals A7kS, 

as may be readily  verified  by  postmultiplying  equation (2.18) by 

S .  Hence 

P = A S  Jc - II I 

(2 .81)  

It then  follows  from  equation (2.71.) that 

S A S  = 0 * (2.82)  

Hence  equation ( 2 . 4 3 )  applies,  i.e., 

A(S-RA’kS) = 0 (2.43) 

Taking  the  transpose  of  the  above  equation we obtain 
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(S-SA*R)A = o ( 2  . 83.) 

Therefore,  in  order  that  equation ( 2 . 6 9 )  have  any solu-  

tion  at all, it is  necessary  that 

(S-SA*R)Y = o ( 2 . 8 4 )  

From  the  above  and  equation ( 2 . 2 9 )  it  then fol lows that 

A(A*R-s)~ = y ( 2 . 8 5 )  

Comparing  equations ( 2 . 6 9 )  and ( 2 . 8 5 )  we  conclude  that 

X, = (A*R-S)y ( 2 . 8 6 )  

is a  solution  of  equation ( 2 . 6 9 ) .  In view- of equation ( 2 . 4 3 )  the 

general  solution of equation ( 2 . 8 6 )  may  be  written  as 

x =  x, + (s-RA"s)~, 

where  the  vector  a  satisfies 

Ra = 0, 

,but is  otherwise  arbitrary. 

( 2 . 8 7 )  

( 2 . 8 8 )  

Adding  equations ( 2 . 8 4 )  and ( 2 . 8 6 )  we obtain  the  following 

alternative  form  for x,. 

x, = M*Ry ( 2 . 8 6 ) '  

That x as  given  by  equation ( 2 . 8 7 )  is  the  most  general 

solution of  equation ( 2 . 6 9 )  can  be  seen  from  the  following argm-ent. 

Since  by'assumption rank(A) = r, the  general  solution  of  equation 
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( 2 .  0 9 )  must. conLain nn arbitrary  linear  combination of (n-r) linenr- 

ly independent  vectors.  Since  by  equation  (2.47)  rank(R) = rank(A) 

it  follows  that  rank(R) = ry whence  by  equation  (2.45) 

rank(S-RA*S) = n-r. x  therefore  is  of  the  required form and  is 

hence  the  general  solution. 

Note  that we  have shown that 

(i.) The  general  solution  of  equation (2.69) is 

given  by  equation  (2.87)  where x, is  any 

solution of eq,uation  (2.69), 

(ii) Given  that SA*S = 0 it follows that 

(A*R-S)y is a  solution of equation  (2.69) 

and (iii) There  exists  an R and  a  corresonding S ,  

both  of  which  are  diagonal  matrices.,  and 

which  satisfy SA*S = 0 .  

I t  will later be shown (see  Section 3 ,  equations (3.10)', 

( 3 . 1 2 ) ' ,  and ( 3 . 1 3 ) ' )  that  if we  define  the  symmetric  matrices M and 

Rh+  by 

M = [: r ]  (2.89) 

and 

then 

(2.99) 

(2.91) 
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where x,  is given  by  equation ( 2 . 8 6 )  or  equivalently  be  equation 

( 2 . 8 6 ) ' .  Since  it  follows  from  equation ( 2 . 8 6 ) '  that 

Rx, = x, ( 2 . 9 2 )  

equation ( 2 . 9 1 )  may  also  be  written  in  the  form 

( 2 . 9 3 )  

The  significance  of  the  term  (yTx,-C)  will  be  explained 

later  in  Section 4 dealing  with  least  squares  parameter  estimates. 

Finally we note that it  follows  from  equations ( 2 . 8 4 )  and 

( 2 . 8 7 )  that 

YTX = yT x, ( 2 . 9 4 )  

In  other  words,  the  product yTx is  the  same  for  all 

solutions x of equation ( 2 . 6 9 )  

2 . 6 . 1  The  Minimum  Norm  Solution ~ ~~ - 

If A in  equation ( 2 . 6 9 )  is singular  then S is  not  equal 

to zero  and  equation ( 2 . 8 7 )  .will  yield  an  infinite  number  of  solu- 

tions  for  equation ( 2 . 6 9 ) .  Of all possible  solutions,  the  minimum 

norm  solution  is  the  one  that  minimizes  the  norm N,(x) given by 

No (x) = xT Q" x, ( 2 . 9 5 )  

where Q is a  diagonal  positive-definite  matrix,  which  defines  the 
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norm.  Let us denote  the  value of x that  minimizes N , ( x )  by x Q .  

Since x is a  function  of  a  it  follows  that  the  parital  deriva- 

I ivc.:; 0 1 -  N,,(x)  w i r h  respect to a must  vanish.  We  hence  find  with 

I I I ( *  ; l i t 1  0 1 .  ( ~ ( ! ~ ~ . - ~ ~  i o n  ( 2 . 8 7 )  t h r l L  

Since S ,  R and Q-l are  diagonal  matrices,  they  commute 

and  the  above  equation  may  be  simplified  to 

(SA"RQ"RA*S + Q-'S)a = - (S-SA*R)Q"x,  (2 .97)  

Since  it  follows  from  equation (2.88) that 

Sa = a 

equation (2 .97 )  may  be  rewritten  as 

(2 .98)  

(SA*RQ-'RA*S + Q-' >a = -(s-sA*R)Q" x, (2 .99)  

In  order to  simplify  the  algebra  it  is  convenient  to de- 

fine 

H = RA*S (2.100) 

It follows from  the  definition  and  the  properties of R 

and S that 

HH = SH = HR = 0, (2.101)'  

and 

R H = H S =  H (2.102) 
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Equation ( 2 . 9 9 )  may now’be re-expressed  in  the form 

(HTQ”H + Q”)a = -(S-HT)Q-’x0. (2 .103)  

( ~ ‘ 0 - l ~  + Q - l )  .being  the sum of a positive-definite  and  a  semi- 

positive-definite  matrix  must  be  non-singular.  Hence 

a = - (HTO-’H + Q (s-H~)Q-’~, -1 -1 
(2 .104)  

From  the  above  and  equations (2 .87)  and (2 .100)  it  follows 

that 

XQ = ?dxo 3 (2 .105)  

where 

N = I -(s-H) (H~Q-’H + Q - ~  >-l  ( s -H~  )Q-’ (2 .106)  

An alternative  form  for N is  obtained as follows. By 

definition of the  inverse 

Postmultiplying  the  above  equation  by QHT we obtain 

( H ~  Q - ~  H + 9-l)- H~ Q-‘ (HQH~ + Q) = Q H ~  , (2.108) 

whence 

B = Q H ~  ( H Q H ~  + Q)-’ (2 .109)  

where 
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B = ( H ~  9-l H + Q - ~  >-’ H~ Q-’ (2,110) 

From  equations (2 .107)  and (2 .110)  we deduce  that 

( H ~ Q - ’ H  + Q-’ I-’ = Q -BHQ (2.111) 



It follows from  equation (2.109) that 

HB = I -Q(HQH’ + 9)” 

Writing  equation (2.106) in  the form 

N = I -s(I-I’ 9” H + Q-’ )-l SQ-’ + (s-H) ( H ~  Q - ~  H + Q-’ >H’ Q-’ 
+H(H’ Q” H + Q” )” SQ-’, 

(2.112) 

we  deduce  with  the  aid of equations (2.110) and (2.111) that 

N = I -S(Q-BHQ)SQ-’ + (S-H)B + OB’SQ-~ (2.113) 

Since S and Q-l commute it follows from the  above and 

equations (2.109) and (2.112) that 

N = I - s + BH + B-HB + QB’ Q - ~  

= -S + QH’ (HQH’ + Q)-’ (I+H) + Q (HQH* + ~ 1 - l  

+ Q(HQH~ + Q)-’ H 
Hence 

N = -s + (Q + Q H ~  )(HQH’ + ~ 1 - l  (I + H) (2.114) 

Note that since it follows from equation (2.86)’ that 

Sx, = 0, whence also Hx, = 0 ,  equations (2.105),  (2.106), and 

(2.114) may  be  replaced  by 

XQ = x, + (S-H) (HT Q-l H + Q“ )” H’ Q” x, (2.115) 

and  the alternative form 

xQ = (0 + Q H ~ )  (HOH’ + ~ 1 - l  X, (2.116) 

23 ’ 



The  choice  as to which  equation  to use  may  be  made  by 

noting  that  (HT  Q-lH + Q-l) is  effectively  an  (n-r) x (n-r) matrix  and 

(HQH‘ + (I) is  effectively  an rar matrix.  (Both  matrices  are nxn 

matrices .and r is  the  rank  of A). 

2 . 6 . 2  Relationship  of  the  Minimum Norm Solution  to  the  General- 

ized  Inverse. 
___ 

It follows  from  equation (2 .110)  that BS = 0. We  there- 

fore  deduce  from  equation (2.112) that 

(HOH~ + Q)-’ s = Q - ~ S  (2 .117)  

Since  (I+H)  (S-H) = S it  follows  from  the  above  and  equa- 

tion (2 .114)  that 

i.e., 

N(S-H) = -s + (Q+QH~ )Q-’ s, 

N(S-H) = 0 

From  the  above  and  equation (2 .106)  we deduce  that 

J W = N  

Since  be  equations (2 .43)  and (2 .100)  

A(S-H) = 0, 

we  similarly  deduce  from  equation (2.106) that 

(2.118) 

(2 .119)  

(2.120) 
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Since by equations (2.84) and (2.100) 

(S-HT)y = 0 ,  (2 .122)  

we  also  deduce  that 

NTy = y (2.123) 

Let  us now define Qo as  the  diagonal  matrix,  whose  ele- 

ments  equal  the  square-root  of  the  corresponding  elements of Q ,  so 

that 

Q,Q, = Q (2.124) 

Also define 

R, = Qol NQ, (2 .125)  

I t  can  be  seen  from  equation (2.106) that R, is  symmetric, 

i.e., 

R', = R, (2 .126 )  

It  can  easily  be  seen  from  the  definition of R, and  from 

equation (2 .119)  that 

' R,R, = R, (2 .127)  

Defining So by 

So = I - R o y  

it follows that 

. .  

(2.128) 

.so so = s o  (2.129) 
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and 

S,R, = .R ,S ,  = 0 

Let L be  defined by 

L = R,Q;’ RA’RQ:’ R , ,  

(2.130) 

(3,. 131) 

and let us  consider  the  expression 

E = (QoAOo R, - S o  ) (LRO - S o  ) 

It follows  from  equations (2.125) through (2.132) that 

E = QoAQoL + So . 

= Q,ANRA*RQ;’ R, + so 

(2.  132,) 

From  the  above  and  equations (2.121) and (2.23) we de- 

duce that 

E = Q~ (R + SA”R)QO’ R, + so 

= & + So + Qo (HT -S)O,’RO 
r 

= I + [ R, QO’ (H-S)Q,] 

= I + [QilN(H-S)Qo]T 

= I, by equation  (2.118) 

It follows from  the  above  and  equation (2.132) that 

. From equations  (2.121) and’ (2.125) we deduce that 
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(Qo AQo  )Ro = Qo AQo s (2.134) 

whence 

(Qo AC!t> )So O (2.135) 

From the  above.  and  equa.tion (2.18) we conclude  that  the 

generalized  inverse of (Qo AQ,) with  respect to R, is  given  by 

(Q,AQ~)~X, = (LR, - s o  )R, 

whence by equations (2 .127) ,   (2 .130) ,  and (2.131) 

(Q,AQ~ )TR~ = L (2 .136)  

We  shall  next  show  that  xQ = (QoLQo)y. 

It  follows from equations (2 .123)  and (2.125) that 

QZ’ RoQo Y = Y (2.137) 

From the  above  and  equation (2 .131)  we deduce  that 

LQo Y = R,Q:~ R A * R ~  

= %Q,’xo, (2.138) 

by equation (2 .86)  ’ 

From the  above  and  equation (2.125) we find that 

, LQoy’ = QO’ NX, 

= Q? xQ 

by  equation (2.105) 

Hence 

(2.139) 
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where L is  given by equation (2,136) as  the  generalized'  inverse of 

QoAQo with  respect to R,. In other  words we have  shown  that  there 

exists  a  generalized  inverse,  which  is  directly  related  to  the  mini- 

mum  norm  solution xQ. 

It is  interesting  to  note  that L is  the  Penrose  pseudo- 

inverse  of (QoAQ,).  (See e.g.,  (Lefferts, 1969)). 

Since  it  was shown that E in  equation ( 2 . 1 3 2 )  equals  the 

identity  matrix  it follows that 

(QoAQo)L = R, ( 2 . 1 4 0 )  

Since R, is  symmetric we deduce  that 

( 2 . 1 4 1 )  

From  equation ( 2 . 1 3 1 )  we find  that 

LR, = L, 

whence  we  deduce  from  equation ( 2 . 1 4 0 )  that 

Similarly we deduce  from  the  transpose of equation 

( 2 . 1 3 4 )  and  from  equation ( 2 . 1 4 0 )  that 

Since  equations ( 2 . 1 4 1 )  through ( 2 . 1 4 3 )  are  the  equations 

satisfied by the  Penrose  pseudo-inverse  of  the  symmetric  matrix 
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(QoAQo) it follows that L is  the  Penrose  pseudo-inverse of (Q,AQ,). 

2 . 7  A Relationship  Between Two ~~~ Incomplete  Inverses, 

Let U and V be  defined by 

u = ATR , 

and 

( 2 . 1 4 4 )  

v = ATR' , ( 2 . 1 4 5 )  

where R and R' are  diagonal  matrices,  whose  elements  are  either 

zero or one.  Let us assume  that R' has  more  non-zero  elements  than 

R, so that we may  write 

R '  = R + K, 

where  the  elements of K are  either  zero  or one, and 

that 

and 

R K = o  

It follows from equations ( 2 .  2 1 )  and 

A = (UR -S)" ( R  + U S ) ,  

V = (AR' -S')" ( R  + A S ' )  

( 2 . 1 4 7 )  

( 2 . 1 8 ) ,  respectively, 

( 2 . 1 4 8 )  

( 2 . 1 4 9 )  
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From equation  (2.148) w e  deduce t h a t  

AR'-S' = (UR-S)" [ (R + US)R'  -(UR-S)S'] (2.150) 
1 

and 

AS' + 'R' = (UR-S)-' [(R + US)S' + (UR-S)R'] (2.151) 

I t  follows from the  above  and  equation  (2.149)  that  

V = [ U(SR'-RS') + (RR' + SS') 3" [ U(RR' + SS')-(SR'-RS') (2.152) 1 
Since 

S '  = 1-R' 

w e  deduce from equat ion   (2 .146)   tha t  

S' = S-K 

I t  follows from equat ion   (2 .147)   tha t  

SK = K 

and 

whence 

We hence  deduce t h a t  

RR' + SS' = R + S-K 
= I-K, 

SR'-RS' = K, 

V = [ UK + (I-K) 3" [ U(1-K)-K] . 

(2.153) 

(2.154) 

(2.155) 



The  above  equation  gives  the  desired  relationship  between 

the two incomplete  inverses  defined by equations ( 2 . 1 4 4 )  and ( 2 . 1 4 5 ) .  

Note  that if K = S, so that R' = I and hen.ce V = A" , then 

V = (US + R)-' (UR-S) ( 2 . 1 5 5 ) '  

The  above  equation could also  have  been  obtained  directly 

by inverting  both  sides of equation ( 2 . 1 4 8 ) .  



3.0 AN  ALGORITHM  FOR  COMPUTING 

THE  INCOMPLETE  INVERSE 

Let M, M*, R, and S be  partitioned  according  to 

M =  [: :] 

where M and M" are  symmetric  matrices  and R and S are  diagonal 

matrices,  whose  elements  equal  either  one  or zero, and R + S = I. 

Since by definition  the  incomplete  inverse M* must  satis- 

fy equation (2.17) it follows that 

[f :3 [ tC :] [E :3 

Equating  the  partitions we hence  obtain 

CR, D + Y T R a X  = .Rc + CS, + S, D, 

YR, D + AR, X = YS, + s a  x, 
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YR, XT + AR, B = R, + AS, + Sa B ( 3 . 6 )  

Note  that  since  matrices M, M”, R ,  and S are  symmetric, 

the  equation  for  the  fourth  partition of equation ( 3 . 3 )  is redundant. 

Since by  equation ( 2 . 2 5 )  

(AR, - S, )- = A*R,-S, , 

we deduce  from  equation ( 3 . 5 )  that 

x = (A*R, -sa )Y (s, -R, D) 

( 3 . 7 )  

In order  to  simplify  the  algebra  let  us  write 

F = -(A*R, -sa >Y, ( 3 . 9 )  

s o  that 

X = F(R,D-S, ) ( 3 .  IO) 

Substituting  the  expression  for X from  equation (3.10) on 

the  left  hand  side  of  equation ( 3 . 4 )  we obtain 

(C + Y T R , F )  (R,D-S, ) = R, + S, D 

Comparing  equations (3.11) and ( 2 , 2 0 )  we see  that 

C + Y T R , F  = D* 

We  hence  deduce  with  the  aid of equation ( 2 . 8 )  that 

(3.11) 

D = ( c  + Y ~ R , F ) *  ( 3 . 1 2 )  



It follows  from  equation (3.6) that 

(AR, -S, ) B  = R, + AS, -YR, Xr , 

whence by equations (2'.18) and (3.7) 

B = A" -(A*R,-S, )YR,X' 

From  the  above  and  equation (3.9) we finally  obtain 

B = A* + FR,X' (3.13) 

Note t h a t  if C, D, R, and S, are  scalars, X and  Y  vectors  and 

R, = 0 and S, - = 1 

then  equations (3.9),  (3.10), (3.12), and (3.13) reduce t o  

and 

3 . 1  

x = (A*R, -sa )Y , 

D = Y'R.X -C , 

The  Computation of the - Incomplete  Inverse 

Let  us  define  the  symmetric  matrix k by 

(3.10)' 

(3.12)' 

(3.13) 

(3.14) 

where 

34 M I  = c + Y'R.F (3.15) 



It follows from the above and  equations (3.10), (3.12) 

and  (3.13)  that  the  partitions of 

are  given by, 

and 

D = (MI)* 

XT = (DR, -S, )F' 

B = A* + FR, X' 

(3.16) 

(3.17) 

( 3 . 1 3 )  

It can  thus  be  seen  that fl may  be  computed  directly  from 
M. (MI)* may  be  computed  by  partitioning M' similarly  to  the  way M 

was  partitioned.  This  process  may  be  incorporated  in  a  procedure  as 

- 

fol lows.  

If M is a symmetric nxn matrix, define M, by 

M, = M (3.18) 

Then f o r  r = n,  n-1,  n-2, . . .  2  partition  each  symmetric 
rxr  matrix M, according  to 

Mr = [ ;; ::I 
Also define . 

R" = R ,  S" = S 

(3.19) 

(3.20) 

and 

(3.21) 
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Corresponding  to  equations (3.9) and (3.15) define 

F,' = -yrT (R: A: - s i  

M r - I  = C, + YrTRLF,, 

Also, define 

Rr-l = Rcr and Sr-l = scr 

(3.22) 

(3.23) 

(3.24) 

and A, by 

whence 

AI = MI , (3.25) 

M;k = AT (3.26) 

Equations (3.18) through (3.26) are  referred  to  as  the 

elimination  equations.  The  inversion  of M is completed  through  the 

use  of  back-substitution  equations (3.27) through (3.29). 

For 

r = 2, 3, . . . ,  n 

M;k = (3.27) 
I 

where  corresponding to equations  (3.17)  and ( 3 . 1 3 )  

and 
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x,' = (Mr-l 
* RCr - S,' ) FrT , 

B, = A: + F, R: X, 
T 

('3 . 28) 

(3.29) 



Finally,  since M, = M it  follows  that 

M* = "IC n 

NOTE 1 

(3.30) 

If M" is calculated  on  a  digital  computer,  then  since  all 

matrices M, are  symmetric,  only  the  upper  triangular  portion of each 

matrix  need  be  stored in  computer  memory. Also, storage  space  may  be 

shared by the  following  matrices: 

In  view  of  equation  (3.28) n temporary  storage  locations  must  how- 

ever  be  allocated.  The  total  number  of  storage  locations  required  to 

compute M" from M is  thus n(n+3)/2. 

NOTE 2 

Since RL is a 1 x 1  matrix  and  the  elements of R are 

either  zero  or one, equations  (3.22)  and (3:23) may be simplified  for 

the two cases Rar = 1 and Rar = 0. Similarly A? as  given  by  equa- 

tion (2.18) may  be  simplified.  Corresponding  to  the  two  cases we 

obtain: 

If R,' = 1 then 

and 

A* = . l / A r  

FrT = -Y: AT 

, 

(3.3iw) 

(3.22W) 

(3.23W) 

and if Kr = 0 then 

A: = -Ar , (3.31V) 
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FrT = Y,' , (3.. 22V) 

and M = c,. 
r -1  (3.23V) 

NOTE 3 

Although A, and Br in  equations (3.19) and (3.27) are 

assumed to be 1 x 1  matrices,  equations (3.18) through (3.30) remain 

valid if e.g., they are kxk matrices.  This  fact  may  be  utilized, 

when the matrix M is so  large,  that  only  part  of  it  may  be  stored  in 

main  computer  memory. 

NOTE 4 

If, e.g., 

M =  

then M" = M-' = M. 

viously  break  down. 

r 1 [ :] and R = 

However,  the  above  inversion  scheme  will  ob- 

It will  next  be  shown  that  the  inversion  scheme 

can  always  be  applied  when  the  matrix (RMR+S) is  positive-definite. 

3 . 2  A  Sufficient  Condition  for  the  Applicability  of  the 

Inversion  Scheme. 

It  will  now  be  shown  that  if  the  matrix (RMR+S) is'posi- 

tive-definite,  then  the  inversion  scheme  is  always  applicable. 

First  we  shall  show  that M" exists  if  and  only  if (RMR+S) is  non- 

singular. 

It  may  readily  be  verified  that 
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(R-S + SMR) (R-S + SMR) = I, 

so that (R-S + SMR) is  non-singular.  Since 

( M R - S )  = (RMR + S)  (R-S + SMR), 

it follows  that (MR-S) is non-singular  if (RMR+S) is. We hence, 

deduce  with  the  aid  of  equation (2.18) that M* exists  if (RMR+S) 

is non-singular.  Since  it  follows  from  equation (2.28) that 

(RMR+S) is  non-singular  if M* exists, we conclude  that M* exists, 

if  and  only  if (RMR+S) is non-singular. 

.To  show  that  the  inversion  scheme  always can be  applied 

when (RMR+S) is  positive-definite,  it is, in  view  of  the  recursive 

nature  of  the  scheme,  sufficient  to  show  that,  when M is  parti- 

tioned  according  to  equation ( 3 . 1 ) ,  both (R,AR,+S,) and (RcM'Rc+Sc ) 

[where M' is  given  by  equation (3 .15 ) ]  are  positive-definite. 

It  follows  from  equations (3 .1)  and (3.2) that 

Rc CR, +S, R, YT R, 
RMR+s = 

Ra YRc R, AR, +Sa 1 
Since RMR+S is  positive-definite,  it  follows  that 

(3.32) 

R,AR, + Sa 
and 

G = Rc CRc + S c  - Rc YT R, (ROAR, + S a  ) -' Ra YRc (3.33) 

are  positive-definite.  That G must  be  positive-definite ca'n be 

seen  from  the  following.  Let  the  vector v be defined by 
( 
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vT = [ uT , -uT R, Y'R (R,AR, + Sa )"I , whence v' (RMR + S ) v  = u'Gu. 

The  result  thus  follows 

An  alternative  expression  for G is  obtained  with  the  aid 

of equation (2.28) as 

G = R, CR, + s, -R, yT R, (A"R, + sa >R, YR, , 

i.e., 

G = R, [c -yT R, A*R, Y] R, + s, 

= R, [C -YT R, (A'ICR, - Sa )Y] R, + S, 

= R, [C + YT R,F] R, + S, , 

by  equation ( 3 . 9 )  

It  follows  from  the  above  and  equation (3.15) that 

G = R,M'R,  + S, . We  have  hence  shown  that  both ROAR, + Sa and 

R , M ' R ,  + S, are  positive-definite  and  that  therefore,  the  inversion 

procedure  always  can  be  applied  when RMR+S is  positive-definite. 

3 . 3  Computation  of  the  Determinant of the  Normalized  Inverse. 

In this  sub-section we shall  compute  the  determinant of 

= A-' (RMR + S)" A m ' ,  ( 3 . 3 4 )  

where A is  the diagonal  matrix,  whose  non-zero  elements  equal  the 

square-root of the  corresponding  elements  of (RMR+S)-' . It follows 

from  equation ( 3 . 3 4 )  that 

det(E) = det(RMR + S)" /(det A) '  , 
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and  hence  that 

det(R) = l/det(RMR + S)det( A*) (3.35) 

It follows from  the  definition  of A ,  that  is  the di- 

agonal  matrix,  whose  non-zero elements  equal  the  corresponding  diagon- 

al elements of (RMR+S)”. Since by equation (2.28), (RMR+S)-’ - - 
(RM*R+S), it  follows  that 

det(R) = det(RM*R + S)/det( A ? ,  ( 3 . 3 6 )  

where  det(A2)  equals  the  product of the  diagonal  elements 

of (RM”R + S ) .  

It follows from  equations (3.1) and (3.2) that 

[R,  DR, + s, R,X’ R, 
RM*R + S = 1 ( 3 . 3 7 )  

whence by equation. ( 3 . 1 3 )  

R,DR, + S, - 0  
RM*R + S = [ 

RaX Rc R, A*R, + sa 1 
( 3 .  38) 

Since  X = F(R, D-S, ) it  follows  that 

R,XT  R, = R, DR,FT R,, 



and. 

R, FR, X' R, = R, FR,. DR, FT R,, , 

R,XR, = R, FR, DR, , 

whence 

- - 
R,  FR, X' R, 

R, DR, + S, R, FT R, 

Rg XRc 1 ( 3 . 3 9 )  

Since  the  value  of  a  determinant  is  unaffected by  the  addi- 

tion  to  any  one  column of a  linear  combination  of  the  remaining 

columns, we deduce  from  equations ( 3 . 3 8 )  and ( 3 . 3 9 )  that 

R,  DR, + S, 0 

R, XR, R, A*R, + sa . det(RM*R + S) = det I 
Hence 

det(RM"R + S) = det(R,DR, + S,)det(%A*R, + Sa). 

From  the  above  and  equation (3.16) we deduce  that 

det(RM'kR + S) = det(R,  (M')7kRc + S, )det(R,A*R, + Sa) ( 3 . 4 0 )  

Applying  equation ( 3 . 4 0 )  to  matrix M, as  defined  by  equa- 

tion (3.19) we obtain  with  the  aid of equations ( 3 . 2 1 )  through ( 3 . 2 4 . )  

det(R' MT R' + S' ) = det(R"' M* r - l  Rr-l -t Sr-l ) 

x det(R:  A? g, + S: ) ( 3 . 4 1 )  
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Since Mn = M we deduce  from  the  above  and  equation ( 3 . 2 6 )  

that 

II 

det(RM*R + S) = det(R',A;kRb + S:), 
r :  I 

where 

( 3 . 4 2 )  

R: = R' and S: = S1 

Since Rb, S: and A T  are 1 x 1  matrices,  the  above  may  be 

simplified  to 

( 3 . 4 3 )  

It  follows  from  equations ( 3 . 2 6 )  and ( 3 . 2 7 )  that det( A 2 ) ,  

which equals the  product oE the  diagonal  elements  of (RM*R + S ) ,  is 

given by 

It  hence  follows  from  equations ( 3 . 3 6 ) ,   ( 3 . 4 3 ) ,  and ( 3 . 4 4 )  

and, since Rb equals  either  one  or  zero,  that 

det(8) = e Q r ,  
r-2 

( 3 . 4 5 )  

where 

Note  that,  since  for  large  matrices det(a) may  be  extremely 

small, det(8) is  best  computed  logarithmically. 
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3 . 4  

Matrix. 

The  Determination  of R when  M  is  a  Semi-positive-definite 

In  this  subsection  it  will  be  shown  how  a  diagonal  matrix 

R is  determined  such  that  the  non-zero  columns of MR are  linearly 

independent, but the  remaining  columns  of  M  are  linear  functions  of 

the  columns  of  MR. 

It was  previously  shown  (see  Section 2.0) that  if R is 

chosen  with  the  above  property  then M* exists. It then  follows 

from  equations  (3.18)  through  (3.30)  that A? must  exist. We there- 

fore  conclude  from  equations  (3.31W)  and  (3.31V)  that  if A, = 0 

(or in practice  less  than  some  small  constant  multiplied  by  the  cor- 

responding  e-lement of M) then Rb = 0, but  otherwise Rb = 1. 

(Note  that,  as can  be  seen  from  equations (3.22)  and  (3.23), R: is 

not used  in  any  computations  till AT has  been  determined).  Since 

the r-th  diagonal  element  of R equals Rb (by definition of RL), 

it  follows  that  the  determination  of  all  matrices Rb in  effect  de- 

termines R. 

3.5 The  Computation  of  the  Incomplete  Inverse  in  the  Presence 

of Patterned  Zeroes. 

Let  us  consider  the  symmetric  matrix 

(3.47) 

and  its  incomplete  inverse 
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x: 
Bl 

L12 

:*I 
B2 

( 3 . 4 8 )  

Examination  of  elimination  equations (3.18) through 

( 3 . 2 6 )  show  that A, and Y, do not  modify A, and Y, . It can  also 

be  seen  from  the  back-substitution  equations ( 3 . 2 7 )  through ( 3 . 3 0 )  

that B, and X, do not  contribute  anything  to  the  computation of 

B, and X,. It follows that  the  partitions of M* (except for L,,) 

may  equivalently  be  computed  by  the  following.scheme: 

and  apply  the  elimination  equations  through A ,  obtaining 

(ii) 

(iii) 

M, = [L, 
'2 J 

Save Y, , E, and 
- 

form M, = [z, 
(iv) Obtain  incomplete  inverse of M, 

(VI Save X,, B ,  and form 

( 3 . 4 9 )  

( 3 . 5 0 )  

( 3 . 5 1 )  

( 3 . 5 2 )  
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M, = [i2 3 ( 3 . 5 3 )  

(vi) Apply  elimination  equations  through z2 to obtain 

B2 I ( 3 . 5 4 )  

The 'scheme  as  outlined  above  may  also  be  applied  when M 

is of the form 

y 1 A,  

y2 0 A2 0 .. . 0 

y3 0 0 'A3 .. . 0 

0 0 .. . 0 

M =  

!y 0 0 0 * . *  .. . A - 

( 3 . 5 5 )  

Furthermore,  the  scheme may, in  a  fairly  obvious way, be 

extended  for  the  case of each A i  (for  i = 1, 2, . . . , n) itself  being 
of the form ( 3 . 5 5 ) .  

Note  that  the  scheme  just  outlined  is  from  a  programming 

point  of  view  far  simpler  (particularly  when  the  matrix  is  stored  in 

upper  triangular  form)  than  the  conventional  way of computing  the 

true  inverse  (which  is  a  special  case of the  incomplete  inverse) 

through  the  scheme: 
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I 

(i) Compute A i 1  , Ai1 Y, and  C = C-Y, Ai1 Yi , ( 3 . 5 6 )  

(ii) Compute A-~’ , A-: Y, and D = (F-Y; Ai1 Y, )-I ( 3 . 5 7 )  

(iii) Compute X, = -A;, Y, D and B, = AY1 -X, (Ai1 Y, f (3.58) 

(iv) Compute 5 = -A;’ Y, D and B2 = -X2 (Ai1 Y2>r ( 3 . 5 9 )  

When each Ai  itself is of the ( 3 . 5 5 ) ,  the  attractiveness of using 

the  scheme  based  on  equations ( 3 . 4 9 )  through ( 3 . 5 4 )  becomes  even  more 

apparent. 
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4 . 0  THE  APPLICATION OF THE 

GENERALIZED  INVERSE TO THE  SOLUTION 

OF THE  LINEAR  LEAST  SQUARES'PROBLEM 

Let us  consider  the  linear  matrix  equation 

u = A,x +E,  ( 4 . 1 )  

where 

the n-vector  u  represents  a  set of n  observations, 

the m-vector x represents  a  set of m  unknown  parameters, 

the  n-vector E represents  the  measurement  noise of each 
observation,  and 

the n m  matrix A, represents  the  mathematical  modelling 
of the  observations. 

The noise  vector E: is  unknown. We  do, however,  assume 

that  its  expected  value  (denoted by the  operator E) vanishes, i.e., 

E ( € )  = 0 ( 4 . 2 )  

It  is  also  assumed  that  the  covariance of the  noise  is 

known. Denoting  this  covariance  by W-l , we thus  have 

= W - l .  ( 4 . 3 )  

48 



4.1 The  Solution 

It  can  be  shown  that  if  the  measurement  noise is  random 

Gaussian  then the most  likely  solution  of  equation (4.1) is  obtained 

by  minimizing  the  expression 

C(X) = (A,x-u$ W(A,X-U) (4 .4)  

A If x is  the  value  of x, which  minimizes C(x) , then  it 
follows that  the  partial  derivations of C(x) with  respect  to x van- 

ish  .when x = x and A 

A 
A: W(A,X -u) = o ( 4 . 5 )  

Defining A and y, respectively,  by 

A = AT,WA, , 

and 

y = AT,WU, 

it  follows  that 
A 

Ax = y, 

and  hence  that 

x = K l y  
A 

( 4 . 8 )  

(4.9) 

x is known as the  weighted  least  squares  estimate. If the  measure- 

ment  noise  is  random  Gaussian  then  it  is  also  the  maximum  likelihood 

A 

estimate. 

- ~~ 
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4 . 2  The  Error in the  Solution. 

It follows  from  equation (4.1), ( 4 . 6 ) ,  and ( 4 . 7 )  that 

y = A x  + ALWE, (4 .10)  

where x represents  the  true parameter.vector. From the  above  and 

equation ( 4 . 9 )  we obtain 

x -x = A-’ (&WE) A 
(4.11) 

We hence  deduce  from  equation ( 4 . 2 )  that 

E(;) = x (4 .12 )  

Since E( E : E ~ )  = W-l  it  follows  from  equation ( 4 . 6 )  that 

E [(A: W E )  (A:  WE)^] = A .  

We  hence  deduce  from  equation (4 .12 )  that 

or 

cov(x) = A-’ 
A 

4 . 3  The  Value  of C(x). 

It follows from  equations ( 4 . 4 )  and ( 4 . 5 )  that 

A 

(4 .12 )  

C(x^) = uT Wu -uT WA, x 
A 

(4 .14)  



I 

Defining C, by 

c, = J W U ,  (4.15) 

it  follows  from  equations ( 4 . 7 ) ,  (4.9), and (4.14) that 

C(^x) = C, -yT A-' y ( 4 .  i6) 

4.4 The  Computation  of x, c.ov(x), and C(x) Using  the  Incom- 
A h A 

" ~" ~~ ~ 

plete  Inverse. 

Let the  symmetric  matrix .M be  defined  by 

(4.17) 

and R (corresponding  to  the  same  partitioning)  by 

(4.18) 

1 

It then  follows  from  equations (2.59), (2 .60) ,  and (2.65) 

that 

M* = [ 1 (y' A-l y -C, ) yT A'1 
(4.19) 

A-1 y A' 

From  the  above  and  equations (4.9), (4.13), and (4.16) we 
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deduce  that 

Note  that - C ( x ) ,  which  is  the  upper  left  diagonal  element 
A 

of M” is  obtained  at  the  conclusion of the  application  of  the  elimi- 

nation  algorithms. 

4 . 5  

Known. 

The  Solution  When  Some  of  the  Parameter  Values  Already ~ ~~~ Are 

Suppose A, and x in  equation (4 .1 )  are  partitioned 

according  to 

and 

x = [ I:] 
so that  equation (4.1) may  be  written  in  the  form 

u = A, x, + A2x2 + E 

(4 .21 )  

(4 .22 )  

tE 

(4 .23 )  

Suppose  further  that we already  have  an  estimate x2 for 
A 

xg and  that we do not  wish to  improve on that  estimate.  To  reflect 

this, let  us  write  equation (4 .23 )  as 

= + ’ (4 .24 )  



I 

where 

( 4 . 2 5 )  

:t ntl 

The components of x2 a re   gene ra l ly   r e f e r r ed   t o   a s   cons id -  

er parameters.  

Corresponding  to  equations (11.6)  through ( 4 . 9 )  the  weigh.ted 

leas t   squares   so lu t ion   of   equa t ion  (4 .24)  i s  given by 

Corresponding t o  equat ion (4.11) we o b t a i n  for t h e  e r r o r  

i n   t h e   e s t i m a t e  

From the  above  and  equation ( 4 . 2 6 )  w e  o b t a i n  

(I+. 2 9 )  

We do no t  know the   co r rec t   va lue  of x?. If we did,   then 

obviously we would  have  used t h a t   v a l u e  f o r  our   es t imate  x7. We 

do,  however,  assume t h a t  we know x p  t o  some  known degree of accur- 

acy .   Spec i f i ca l ly ,  w e  assume t h a t  

A 

A 

E(;, ) = x7 9 (4 .30 )  

53 



and 

( 4 ' .  3 1) 

w h e r e  V, is a  known  diagonal  matrix. 

It follows from equations ( 4 . 2 9 )   ( 4 . 2 )  and ( 4 . 3 0 )  that 

E ( G l )  = x1 - ( 4 . 3 2 )  

The sensitivity  matrix Z is  defined  by 

z = -(A; WA, 1-l (&WA, ) 

Equation ( 4 . 2 9 )  may then be expressed  as 

( 4 . 3 3 )  

Since  clearly  E(Ex~) = 0 we deduce  from  equations ( 4 . 3 4 ) ,  

( 4 . 3 )  and ( 4 . 3 1 )  that cov($,), which  is  defined by 

is given by 

cov(Gl = (A: WA, )-I + zv, v2 zT 

The  Alias  matrix L is  defined by 

L = zv, 

Hence  equation ( 4 . 3 6 )  may also be  written as 

( 4 . 3 6 )  

( 4 . 3 7 )  
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cov(x, ) = (A: WA, )” + LLT A 
( 4 . 3 7 )  

Let  us  now  consider  the  more  general form of  equation 

(4 .22 )  that  generally  occurs  in  practice. 

As before  let  us  assume  that we already  have  an  estimate 

for  some  of  the  components  of x, and  also  that we know the  stand- 

ard  deviation  of  the  error  in  each  estimate. 

Let S be  defined  as  the  diagonal  matrix,  whose  diagonal 

elements  equal  either one  or zero, such  that  an  element  equals  one 

if  the  corresponding  parameter  is  to  be  estimated  but  otherwise 

equals  zero. 

If  futher  R  is  defined by 

R = I -S, 

then we  obtain  corresponding  to  equation (4 .23)  

u = A,& + A,Sx + E ,  

and  corresponding  to  equations (4 .24)  through (4 .26)  

- u = A,R(x -X,) + S 

where 

- 
u =  u - A,x, 

and 

( 4 . 3 8 )  

( 4 . 3 9 )  

(4 .40)  

(4 .41)  

(4 .42)  

55 



where x, is  the  initial  or  a  priori  estimate of x. 

Minimizing 

C(X) = [ U - A,R(X-XA) 1 W [E - A,R(x-x,)]  , ( 4 . 4 3 )  

with  respect  to x,  we obtain,  when as  before  denoting  the  corres- 

ponding  value of x by x.  
A 

R A L W [  i - A,R(x-x , )  ] = 0 
A 

(4 .44 )  

It  follows  from  the  above  and  equation ( 4 . 6 )  that 

( 4 . 4 5 )  

where 

- 
y = ALWii ( 4 . 4 6 )  

Since  premultiplying  equation (2 .19)  by R and  then  post- 

multiplying  the  resulting  equation  by R, yields, 

and 

RA*M = R + RA*S. 

RA*RAR = R 

( 4 . 4 7 )  

( 4 . 4 8 )  

we  deduce  after  premultiplying  equation ( 4 . 4 5 )  by RA* that 

R(x-X,) = RA*Ry 
A 

( 4 . 4 9 )  
A 

Since  we already know Sx = (SX,) , equation ( 4 . 4 9 )  yields 
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the  required  least  squares  solution  of  equation ( 4 . 3 9 ) .  

Let us next  investigate  the  error  in  the  estimate I&. 

It follows from equations ( 4 . 4 6 ) ,   ( 4 . 4 0 ) ,  and (4 .42 )  that 

- 
y = d,W A, (x-x,) + E 

whence  by  equation ( 4 . 6 ) ,  

- y = A(x-x,) + A:WE (4 .50)  

From  the  above  and  equations (4 .47)  through (4 .49)  we de- 

duce  that 

A 
~ ( x - x , )  = (R + M*S) ( X - X , )  + RA*R AT,WE , 

and  hence  that 

A 
~ ( x - x )  = RA*R ALWE - ~ * s ( x , - x )  

A s  before  let  us  assume  that 

E(Sx,) = Sx , 

and 

E[ S(x, -x) (x, -x)~ S 3 = SVVS , 

where SV is a  known  diagonal  matrix. 

It then  follows  that 

(4 .51)  

(4 .52)  

(4 .53 )  
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A 

E ( R x )  = Rx (4 .54)  

and 

The last  equation  may  with  the  aid of equation (4 .48 )  be 

written  as 

cov(Rx) = RA*R + Ld A 

where  the  Alias  matrix  L  is  given  by 

L = "* sv 

Finally we deduce  from  equations ( 4 . 4 3 ) ,   ( 4 . 4 4 ) ,  and 

(4 .46 )  th.at 

c(^x) = . u WG - y R ( x - x , )  
"T -1 A 

(4 .55)  

(4 .56)  

(4 .57)  

4 . 5 . 1  . The  Computation of the  Solution,  The  Alias  and  Covariance 

Matrices  Using  the  Incomplete  Inverse. 

Let the  symmetric  matrix M be defined  by 

where. 
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M =  [; :'I (4 .58)  

c, = UTWU. (4 .59)  



LCL R and 8 ,  when p a r t i  I:i.oncd s imilar ly  to M in equa- 

tion ( 4 . 5 8 )  be  defined by 

[: PI I ( 4 . 6 0 )  

Comparing  the  above  with  equations ( 3 . 1 ) ,   ( 3 . 2 9 ,   ( 3 . 9 ) ,  

(3.10), ( 3 . 1 2 ) ,  and ( 3 . 1 3 )  we deduce  that 

M* = [ 1, ( 4 . 6 1 )  

where 

x - = ( P R - S ) ?  ( 4 . 6 2 )  

D = -C, + 7' FG ( 4 . 6 3 )  

and 

B = A* ( 4 . 6 4 )  

Premultiplying  equation ( 4 . 6 2 )  by R we deduce,  with  the 

aid of equation ( 4 4 9 )  that 

A 
R(x-X,)  = FG , 

and  hence  from  equations ( 4 . 6 3 )  and ( 4 . 5 7 )  that 

D = -C(c) 

It follows  from  the  above  that 

( 4 . 6 5 )  



M* ,[ x -.c &) 
A* XT 1 ( 4 . 6 7 )  

The  Alias  matrix L and  the  covariance  matrix cov(Rx) .m,ay A 

be  computed  from  equations ( 4 . 5 6 )  and ( 4 . 5 5 ) ,  respectively.  Note 

that  since R and S are  diagonal  matrices,  whose  elements  equal 

either  zero  or one, the  elements of RA*R and RA*S are  also  elements 

of A*. Also note  that  it  can  easily  be  shown  that  the  full  covar- 

iance of x is  given  by 
A 

cov($) = RA* R + (SV+L) (SV+L)T (4.68) 

4 . 5 . 2  The  Change  in  the  Solution  When  the  Number of Parameters 

Being  Estimated  is  Increased. 

In  this  subsection we shall  investigate  how  the  least 

squares  solution  of  matrix  equation  (4.39)  is  changed,  when  one of 

the  consider  parameters  is  included  in  the  set of parameters  being 

estimated. 

Specifically, we shall  consider  how  the  solution is changed 

when S, as  defined in the  preyious  subsection,  is  changed  to S 

such  that S - S ’  is a  diagonal  matrix  with  only  one  non-zero  element, 

which  equals  one. 

1 

Corresponding  to  equation  (4.38)  let us  define 

(4.69) 

and  corresponding  to  equation(4.60) 
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(4.70) 

It  then   fo l lows   f rom  the   def in i t ion   o f  S1 t h a t  

= i?+K , (4.71) 

where K i s  a diagonal  matrix  with  only  one  non-zero  element,   which 

equals  one. L e t  us  assume t h a t   t h i s  i s  the  (k+l)- th   diagonal   e lement ,  

so t h a t  i t  i s  the  k-th  parameter  that  i s  now i n c l u d e d   i n   t h e  s e t  of 

parameters  being  estimated. 

Since ii and,  hence C, and 7 are  independent of S ,  i t  

follows t h a t  M as given by equat ion  (4 .58)  i s  independent  of S .  

However, M" a s   g iven  by equat ion ( 4 . 6 7 )  i s  the   incomple te   inverse   o f  

M w i th   r e spec t   t o  R ,  so t h a t  M* w i l l  change  as R changes  from E l .  

Reta in ing   the   no ta t ion  M* = MTi? , w e  deduce,  by  comparison  with  equa- 

t ions  (2.144)  through  (2.146)  and  equation  (2.155)  that  

- - 

MTR1 = [ M"K + (1-K)]-' p ( I - K )  -K] (4.72) 

Before  futher   consider ing  equat ion  (4 .72) ,  l e t  us  write M* 

i n   p a r t i t i o n e d  form as 
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(4 .73)  

where  the  vector (m: , 1-1 , mi ) occupies  the (k+l) th  row of M". It 

then follow's that 

and 

where 

and 
62 

M*(I-K) -K 

0 

-1 

0 

Inverting  equation (4 .74)  we  obtain 

I -m, 

[ M*K + (I-K)]-' 
-m2 

(4 .74)  

(4 .75)  

(4 .76)  

(4 .77)  

(4 .78)  

(4 .79)  



It  follows  from  equations ( 4 . 7 2 )  , ( 4 . 7 5 )  , and ( 4 . 7 6 )  that 

( 4 . 8 0 )  

Equation ( 4 . 8 0 )  may  be  interpreted  as  follows. Let the 

estimate  corresponding to R be  denoted  by  and  let ATRI be  de- 

noted  by AJcl .  It  then follows from  equations ( 4 . 6 4 )  , ( 4 . 6 7 )  , ( 4 . 7 3 )  , 

and ( 4 . 7 7 )  through ( 4 . 8 0 )  that 

l 

( 4 . 8 1 )  

( 4 . 8 2 )  

and A 
C(E;I) = C(X) t (X1-X*)k (X), 

A 
( 4 . 8 3 )  

Of  the  three  equations ( 4 . 8 1 )  through ( 4 . 8 3 )  the  last  one 

is  of  the  greatest  practical  interest,  because  it  tells  us which  para- 

meter, if  included in the  set  of  parameters to  be estimated,  yields 

the  least  value  for C(^x ' ) .  In other  words,  it  tells us which  addi- 

tional  parameter  to  estimate  in  order to achieve  the  maximum  improve- 

ment  in  the  data  fit. 

4 . 6  The  Solution  When  the  Matrix  is  Computationally  Singular. 

Two cases  will  be  considered  here: 

(i) Initial (or a priori)  estimates  are  available  for  all 

parameters,  and 63 



(ii) Initial  (or  a  priori)  estimates  may  be  available  for 

some parameters,  but  certainly not for a l l .  

In the  next  subsection,  it  will  be  shown how, in  case (i), 

the  computational  singularity  may be avoided. 

4 . 6 . 1  Avoidance  of  the  Computational  Singularity  When  Independent 

A Priori  Estimates  are  Available  for  All  Parameters. 

Let us  consider  matrix  equations ( 4 . 4 0 )  through ( 4 . 4 2 ) .  

Since the a  priori  estimates x, in  a  mathematical  sense  are  equiva- 

lent to direct  measurements  of x, they  are  included in the  vector ii 
representing  the  observations. To reflect  this,  equations (4 .39 )  

through (4 .42)  may  be  written  in  partitioned  form  as 

where 

and 
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U’ = U’ - A;xA 

(4 .84)  

(4 .85 )  

(4 .86)  

- 1  = & E ’  + A:S(X-X,) (4 .87)  

Comparing  equations (4 .85)  and (4 .40 ) ,  we thus see that 



( 4 . 8 8 )  

It also  follows  that  the  weighting  matrix W is of  the  form, 

( 4 . 8 9 )  

J 

where  consistent  with  equations ( 4 . 5 2 )  and ( 4 . 5 3 )  

E(x,) = X ( 4 . 9 0 )  

and 

E [I (x, -x) (x, -x,'] = W ( 4 . 9 1 )  

From  the  above  and  equations ( 4 . 6 )  and ( 4 . 7 )  we deduce  that 

A = A' + V-' V-I , ( 4 . 9 2 )  

where 

A' = (Adf W'A; . ( 4 . 9 3 )  

We  similarly  deduce  from  equation ( 4 . 4 6 )  that 

- 
y = (A,'$ W'u' ( 4 . 9 4 )  

Since by assumption  the  estimates  of  the  components of. x 

are  independent  it  follows  that V-' is  a  diagonal  matrix. 
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It was  previously  established  (Subsection 3 . 4 )  that  the 

matrix  being  inverted  is  computationally  singular  when A, = 0 in 

equation ( 3 . 1 9 ) .  Since  the  matrix  must  be  at  least  semi-positive 

definite  without  any  a  priori  estimates  being  available, A, should 

therefore  be  tested  for  being  less  than  or  equal  to  zero  (or,  in 

practice,  some  small  predetermined  constant.  See  (Morduch, 1 9 7 5 ) )  

before  the  addition  of  the  corresponding  element  of V-lV-l, and  if 

found  to  satisfy  the  test  then  both A, and y, should  be  set to 

zero  before  the  addition  of  the  corresponding  element of I7-lV-l. 

y,  should be  set  to zero, since  if A, = 0 then  the  matrix  cannot 

be  semi-positive-definite  unless y, = 0. 

Note  that  the  procedure  indicated  above  is  mathematically 

equivalent  to  switching  a  parameter  from  being  a  'solve for' to 

being  a  'consider I parameter  in  order  to be  able  to  obtain  a  solu- 

tion. 

4 . 6 . 2  The  Minimum Norm Solution 

If it is found  impossible  to  compute  a  definite  solution 

to  the  least  squares  problem,  then  it  is  often  desirable  to  obtain  a 

minimum  norm  solution.  The  computational  procedure  for  a  minimum 

norm  solution  is  given  in  Subsection 2 . 6 . 1 .  In this  subsection we 

shall  discuss  both  the  form of the  norm  and  some  justification  for 

choosing  a  minimum  norm  solution. 

The  norm  of  the  estimate x, in  accordance  with  equation 
A 

( 2 . 9 5 )  is  given  by 
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N,(x) = xT Q-' x ( 4 . 9 5 )  



In as  far as. the  components  of x represent  physical  quan- 

tities,  the  terms  of  the sum appearing  on  the  right  hand  side  of 

equation (4.95) must  have  physically  the  same  dimensions. It should 

mention that  this  condition is not, in  general,  met by the  frequent- 

ly used Euclidean  norm ( Q = I ) .  A suitable  norm  is  given  by Q being 

the  diagonal  matrix,  whose  diagonal  elements  satisfy 

Qii = Aii ( 4 . 9 6 )  

That  this  leads  to a dimensionally  correct  norm  is  obvious  since  it 

has  the  same  dimensions  as C(x), the  quantity  being  minimized  for 

the  Least  squares  solution. It can be shown  that  the  physical  in- 

terpretation  of  the  norm  given  by  equation ( 4 . 9 6 )  is  that not only 

is the  weighted  sum  of  the  squares  of  the  residuals  minimized, but 

also  the  weighted  sum of the  squares of all  individual  contributions 

to  the  observation  vector ii. The.  proposed  norm  is  quite  general. 

J 

Other norms that  better  fit particualr physical  situations 

however,  also  be  considered. 

Let  us  now  discuss  the  justification  for  choosing a mini- 

mum  norm  solution. First, let  us  say  that  if  the  only  requirement 

is  that  the  weighted sum of  the  squares  of  the  residuals  should  be 

a minimum and no  o.ther information is given,  then  any  solution  of 

the  least  squares  problem  is as likely to  be  correct  as  any  other. 

Such,  however,  is  never  the  case  when we are  dealing  with  physical 

quantitities,  which  are  always  bounded. Also, by  minimizing  the 

corrections  to  the  unknown  parameter  values, we ensure  that,  to  the 

extent that-they are  in  error, we also  minimize  any  adverse  effects 
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those  parameters  might have,  when used  to  predict  another  set of 

observations. 

4.7 The Expected  Value of the Sum of the  Squares of the 

Weighted  Residuals. 

In this  subsection we shall  consider  the  expected  value of 

C($) as  given by  equation ( 4 . 5 7 ) ,  viz. - 

-T A 
C($) = cTWG - y  R(x-x,) (4 .57 )  

It follows from  the  above and equations (4 .49)  and 

( 4 . 4 6 )  that 

C ( k )  = ii'bJ[G - A.RA*RAbWr;] 

Since by  equations ( 4 . 4 0 )  and (4 .42 )  

- 
u = A, (X-X,) + E , 

we deduce  with  the  aid  of  equations ( 4 . 6 )  and (4 .47)  that 

i.e., 
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C(f;) = ii'W A, (S-M*S) (x-x,) + E -A,, Rk*Rk;w~] [ 

(4.97) 

(4 .98)  

(4 .99)  



Since,  i f  for   any . two  mat r ices  P and Q both PQ and QP 

are   def ined,   then  t race(PQ) = t r a c e  (QP), i t  fo l lows   t ha t  

c(^x> = t r a c e  ( ( x - x A ) ~ T  WA, (s-RA~'s)] + t r a c e  (EaT W }  

- t r a c e  / A ' ~ , w ~ u ~  WA,M R * t  (4.100) 

From the  above  and  equations (4.98), ' (4 .2) ,  (4.3), ( 4 . 6 ) ,  

and (4.53) w e  o b t a i n ;  

Post-mult iplying  equat ion  (2 .17)  by S w e  deduce  that  

AS - AM" S = -SA" S (4.102) 

Since  the  diagonal  elements of Sri"R vanish  w e  f i n d   w i t h  

t h e   a i d  of equat ion  (2 .23)   that  

trace 1 A U " R }  = t r a c e  [ R ]  (4.103) 

Hence, 

E( C (i)) = trace { W-' W } - trace { R ]  - trace {W(Snf S)} (4.104) 

I f  t h e  number of   observat ions  equals  n and  the number of 

parameters  being  estimated i s  m, then 



t r a c e  {W-’ W] = n and t r a c e  { R ]  = m. ( 4 . 1 0 5 )  

We hence   ob ta in   the   resu l t  

E(C(:)) = n-m - t r a c e  { ~ ( S P S ) }  ( 4 . 1 0 6 )  



5 . 0  SUMMARY 

The general ized  matr ix   product  of two square   mat r ices  A 

and B y  denoted by A - B y  i s  def ined by 

A * B  = -ARB + AS + S B  , ( 2 . 1 6 )  

where 

R = R' 

RR = R 

and 
S = I - R  (2.12) 

It i s  shown tha t   fo r   any   t h ree   squa re   ma t r i ces  A ,  B y  and 

C 

( A - B ) - C  = A -   ( B - C )  

and f o r  any  square  matrix A 

A - ( - R )  = ( - R ) * A  = A 

The genera l ized   inverse   o f  A w i t h   r e s p e c t   t o  R i s  den0 

by ATR or, when no r i s k  of confusion  ar ises   s imply by A . It 

s a t i s f i e s  

* 

A-A" = A* . A  = -R (2 * 6 )  
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Also 

and 

(2.11) 

When R defining  the  generalized  inverse is diagonal,  the 

inverse is referred  to  as  the  incomplete  inverse  with  respect  to R. 

Given  the  matrix  equation 

A x = y  ( 2 . 6 9 )  

where A is  a  symmetric  matrix  and x and  y  are  vectors,  it  is 

shown  that  there  exists  an R such  that Aik(=ATR)  is  defined  and 

SA* S = 0 (2 .82)  

The  general  solution of  equation ( 2 . 6 9 )  is  given  by 

(2 .87 )  

where 

x, = RAikRy ( 2 . 8 6 )  ' 

and  the  vector  a  satisfies Ra = 0, but  is  otherwise  arbitrary. 

(Note  that if A is non-singular  then R = I, S = 0 and A* = A-' ). 



n o m  

N, (x) = x' Q" x , 

with  respect to a.  It  is  given by 

- - x, + (S-H) (H' Q'l H + Qw1 ) H Q" x, 9 (2.115) 
-1 T 

or  alternatively  by 

X, = (Q + Q H ~  ) (HQH~ + Q)-' X, , 

( 2 . 9 5 )  

(2 .116)  

where 

H = RA*S 

A procedure  for  obtaining  the  incomplete  inverse of a sym- 

metric  matrix M is  given  in  Section 3 .  It is  shown  that  the  pro- 

cedure  may  always  be  applied  when (RMR+S) is  positive-definite. 

Consider  the  linear  matrix  equation 

- 
u = A,R(x-x, ) + E 9 

' where 

- 
u =  u -A,x, 9 

- 
E E + A,S(X-X,) 9 

(4 .40)  

(4.41) 

(4 .42)  
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u is a  vector of observed  measurements, 8 is  the  measurement 

noise, x is a  parameter vector, xA is the  a  priori  estimate  of 

x ,  R and S are  diagonal  matrices  satisfying  equations ( 2 . 3 )  and 

(2 .12) ,  respectively. The components  of x are  either  'solve'  or 

'c0nsi.de-r' parameters. R and S are  further  defined  such  that 

= 1 and Sii = 0 if xi  is  a  'solve'  parameter, 

= 0 and Sii = 1 if xi is a  'consider'  parameter. 

The  weighted sum of the  square of the  residuals  is  given  by 

where 

W" = ) ( 4 . 3 )  

C(x) is a  minimum  when x = x. x is  the  weighted  least 
A A 

squares  solution  of  equation ( 4 . 4 0 ) .  

The  symmetric  matrix M is  defined  by 

( 4 . 5 8 )  

where 

74 c, = u wii -T 
9 ( 4 . 5 9 )  



and 

and 

where 

- 
y = ALWC 

A = A', WA,, 

Corresponding t o  M ,  R and 3 
- 

are def ined by 

I t  i s  shown t h a t  

M* ' I  A+< , 

R(G-x , )  = & Y 

C O V ( ~ ~ X )  = RA*R + L L ~  
A 

, 

and 

(4.46) 

(4.60) 

(4.65) 

(4.55) 

(4.56) 

(4.53) 
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It  is  further  shown  that 

E[c(/\~)] = n-m - trace{ VV(SA'~S> I ( 4 . 1 0 6 )  

where n is the  number of observations  and  m is the  number  of 

'solve'  parameters.  Note  that  a  priori  estimates  for  'solve'  para- 

meters  should  be  counted  as  observations . 

If,  e.g., x, is  switched  from  being  a  'consider'  to  a 

'solve'  parameter,  and  the  new  estimate  for x is  denoted  by X I ,  

then 

A 

C (̂ x' ) = C (2) + (x)', / (A*),, ( 4 . 8 3 )  
( 4 . 8 2 )  
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